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Introduction to the NVIDIA debugging toolchest

Overview
- NVIDIA HPC SDK » Bundled with the HPC SDK is a debugging toolchest
- A comprehensive suite of compilers, libraries and tools - CUDA-GDB
for HPC  Interactive thread-based debugger
* More info: https://developer.nvidia.com/hpc-sdk - Compute Sanitizer
* Provided by nvhpc module - Functional correctness checking suite

* nvhpc/21.9 is default on Polaris

DEVELOPMENT ANALYSIS
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Overview: CUDA-GDB

Built on the familiar GDB debugger!
Fase-of-use: Users already familiar with gdb
GPU debugging provides a similar logical experience
Existing C/C++/Fortran support
Seamless experience between host (CPU) and device (GPU) debugging
Support for CUDA/OptiX/OpenACC/OpenMP/etc source level device code
Support for SASS disassembly
Various command extensions unique to CUDA-GDB

Interactive CLI based tool

Provides reactive debugging of CUDA kernels

CUDA Runtime errors
Debugging when exceptions occur
Logic errors producing incorrect answers

Post-mortem debugging with corefiles
Coredump capture enabled via environment variables
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Overview: CUDA-GDB

Quickstart

On Polaris
* Provided by PATH from module nvhpc/21.9 (default)

Latest documentation: https://docs.nvidia.com/cuda/cuda-gdb/index.html

Tips and Tricks: https://docs.nvidia.com/cuda/cuda-gdb/index.html#advanced-settings

Getting help: https://forums.developer.nvidia.com/c/development-tools/cuda-developer-tools/cuda-gdb/
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Overview: CUDA-GDB

Quickstart

» Recompile application for debugging - HPC features of interest (cont.)

* When compiling with nvcc: » Limited CUDA-GDB support for CUDA Multi Process
Server (MPS)

e https://docs.nvidia.com/deploy/mps/index.html#topic_3 3 _
6 1

_ « Use CUDA_VISIBLE_DEVICES env var to select which

+ Provide —g for host (CPU) debugging
+ Provide —G for device (GPU) debugging

+ Using —1ineinfo will allow debugging of optimized code GPUs are available to the application
* Lacks .debug._info S_eCtiO”S - CUDA Lazy Loading feature can speed up debugging
- No symbolic debugging times significantly (10x or more)
- Debugging optimized code can be a challenging experience _
* Check your compiler manual’ . Requires CUDA Toolkit 11.8+ and CUDA driver r520+
* Command line arguments can vary by compiler - Defers loading cubins until first use
- Pascal+ GPUs have an improved debugging experience . ngecially helpful for applications linked against large math
. . ibs
* Out of scope for J_Chls p.resentatlon » See for more info: https://docs.nvidia.com/cuda/cuda-c-
» Feature support listed in the CUDA-GDB manual programming-guide/index.html#lazy-loading

- CUDA-GDB uses TMPDIR to write temporary files
» Defaults to /tmp if TMPDIR unset
» Directory required to be writeable
* Needs to be the same for both application and CUDA-GDB

» HPC features of interest
» Mutli-GPU debugging is supported on same node

- Multiple CUDA-GDB instances can debug multiple
pProcesses running on same node
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Overview: CUDA-GDB

Assume: familiarity with the CUDA programming model Physical

Device
CUDA capable GPUs

Exposes both logical and physical concepts to user

Logical Comprised of many SMs
Kernel SM
A function executed in parallel on the device Streaming multiprocessor
Executed as a grid of blocks of threads Executes block(s) in warp sized chunks
Specified by the <<<..>>> syntax Warp
Block Group of 32 lanes
Consists of threads - 1024 threads max L ane

3-dimensional coordinate
dim3 named blockIdx
Bounded by g ridDim CUDA thread CUDA core

Thread -> |

Smallest unit of work

Core that executes CUDA thread

: : : CUDA streaming
B-dlmeﬂSIOﬂa| COOFdlnate CUDA thread block Multiprocessor(SM)
dim3 named threadIdx Q 1] |

Bounded by blockDim
CUDA-capable GPU

il

CUDA kernel grid
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Overview: CUDA-GDB

Terminology

- CUDA focus - CUDA focus (cont.)
* Most CUDA-GDB commands apply to a single thread in » Thread identifier (logical)
focus - Device identifier (physical)
* Focus can be host or device thread SM identifier (physical)

» Breakpoints or exceptions inside a CUDA kernel will
automatically switch to device focus

- Warp identifier (physical)

- Lane identifier (physical)

- Kernel identifier (logical) - Consider: two or more threads in the same warp execute
» Assigned sequentially by CUDA-GDB different instructions
- Unique across devices * Example: if else body
- Begins at index O - Active lane mask
. Grid identifier (logical) - Threads that are currently executing device code at Spc
- Assigned by CUDA - Divergent lane mask
- Unique per device » Threads that are waiting or have completed at Spc

* Begins at index 1
» CUDA dynamic parallelism can have negative grid offsets

- Block identifier (logical)
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Overview: CUDA-GDB

Device information

« Use info cuda commands to query CUDA enabled GPU activities

» Output from info cuda marked with a * indicates that the range contains the focused CUDA thread
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Overview: CUDA-GDB

Device information

- info cuda kernels
» Displays the list of kernels

- info cuda blocks
- Displays the list of active blocks in the focused kernel
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Overview: CUDA-GDB

Device information

- info cuda threads
» Displays the active threads in the focused kernel

» Obtain current focus with cuda commands
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Overview: CUDA-GDB
CUDA thread focus

 CUDA thread focus is controlled with cuda commands
» Sets focus to single CUDA thread

+ Some commands apply only to thread in focus
* Printing local or shared variables
* Printing reqisters
* Printing stack contents

- Examples
» Set focus to specified CUDA thread

» Set focus based on block and thread

+ Set focus based on kernel, dim3 block, dim3 thread
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Overview: CUDA-GDB

Execution Control Basics

» Two ways to get control - Resume application execution

* Resumes both host and device threads
* Interrupt execution with ctrl-c

- attach - Application is executing

* No (cuda-gdb) prompt
foudatott) actaen as1230 - Ger1-C haits both host and device threads

- Exit debugger with quit
» Applications run are killed
- Applications attach are detached
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* Single stepping

» Source vs assembly level
» Over vs into function calls

* Device behavior is like host
» Source level - following source line in kernel

Overview: CUDA-GDB
Stepping

+ Stepping behaviors (cont.)

» Stepping over barriers
- Example: __syncthreads()

* Resumes execution of all warps executing the same block

* Required to make forward progress past barrier

» Assembly level - following SASS instruction

Over functions

next

nexti

Into functions

step

stepl

» Stepping behaviors

» Single stepping advances every active thread in the warp
- Divergent inactive threads do not make forward progress

» kernel launch is asynchronous

» Cannot step into launched kernel from host code

» Set a breakpoint or use break_on_launch

14 <ANVIDIA. I



Overview: CUDA-GDB

Breakpoints

» Symbolic breakpoints » Kernel entry breakpoints

» Used to automatically break on kernel launches
» Good first step if you don’'t know where to start

* Line breakpoints

- Address breakpoints

» Conditional breakpoints
» Executed on the host every time breakpoint is hit
» Can be slow
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Overview: CUDA-GDB

Breakpoints

- info break
* View the status of breakpoints
» Breakpoints can be pending
» Breakpoints can be set at multiple addresses
» Breakpoint locations may change during runtime

» Breakpoint resolution

- Breakpoints inserted as pending until CUDA cubins are loaded

» Missing most CUDA symbols
* Host side shadow breakpoints can be inserted on named kernel
- Automatically resolved to device location after cubin load

* Missing line info
» Similar debugging experience to dlopen
- C++ templates may result in multiple breakpoint locations
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Overview: CUDA-GDB

Breakpoints

» Pending breakpoint examples
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Overview: CUDA-GDB

Breakpoints

+ Pending breakpoint examples (cont.)
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Overview: CUDA-GDB

Stacktrace

» Same commands as used in gdb
- where, bt, info stack

- Applies to the thread in focus

« CUDA threads have first source line of kernel as outermost frame
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Overview: CUDA-GDB

Examining state

- info locals
- Displays local variables in the current stack frame
* Value printed or hint as to why the variable is not valid
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Overview: CUDA-GDB

Examining state

* print » Supply address space identifier when storage class is
- Read a source variable ambiguous
 Variable must be in scope ¢ @COde, @ConStant, @gene riC, @global,

@managed_global, @parameter, @shared,
@register, @local, @uniform_register

* Local or global scope

- info registers
* Inspect device registers

* Pseudo names
» SR<num>
» Reqular register
- set variable - SUR<num>
* Write to a source variable - Uniform register

- Address space must have write permissions »+ SUP<num>
» Uniform predicate

= SPC

* Program counter

» Unassignable
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Overview: CUDA-GDB
APl Errors

- set cuda api_failures
» Allows automatic checks of any CUDA driver or runtime API call

 Three modes
 hide

* Do not report error of any kind

- 1lgnore
- Emit warning, but continue execution
* Default

- stop
* Emit an error and stop execution
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Overview: CUDA-GDB

GPU device exceptions
Always caught
Fatal - unable to continue device execution

Most exceptions are precise
View address causing exception with Serrorpc

CUDA cluster (CUDA 11.8+) exceptions are imprecise
Use autostep to determine exact block and instruction causing error

CUDA_EXCEPTION_O through CUDA_EXCEPTION_T8
See link for table of exceptions and descriptions:
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» Table of exception codes

Overview: CUDA-GDB

GPU Exceptions

Table 1. CUDA Exception Codes

Exception Code

Precision of the Error

Scope of the Error

Description

CUDA_EXCEPTION_© : "Device Unknown Exception” Unknown Global error on the GPU This 1s a global GPU error caused by the application which does not match any of the listed error codes
below. This should be a rare occurrence. Potentially, this may be due to Device Hardware Stack
overflows or a kernel generating an exception very close to its termination.

CUDA_EXCEPTION_1 : "Deprecated" Deprecated Deprecated This exception is deprecated and should be treated as CUDA_EXCEPTION_©.

CUDA_EXCEPTION_2 : "Lane User Stack Overflow" Precise Per lane/thread error This occurs when a thread exceeds its stack memory limit.

CUDA_EXCEPTION_3 "Device Hardware Stack Overflow" Precise Global error on the GPU This occurs when the application triggers a global hardware stack overflow. The main cause of this
error 1s large amounts of divergence in the presence of function calls.

CUDA_EXCEPTION_4 : "Warp Illegal Instruction” Precise Warp error This occurs when any thread within a warp has executed an illegal instruction.

CUDA_EXCEPTION_5 "Warp Out-of-range Address"” Precise Warp error This occurs when any thread within a warp accesses an address that is outside the valid range of local
or shared memory regions.

CUDA_EXCEPTION 6 : "Warp Misaligned Address" Precise Warp error This occurs when any thread within a warp accesses an address in the local or shared memory
segments that is not correctly aligned.

CUDA_EXCEPTION_ 7 : "Warp Invalid Address Space" Precise Warp error This occurs when any thread within a warp executes an instruction that accesses a memory space not
permitted for that instruction.

CUDA_EXCEPTION_ 8 : "Warp Invalid PC" Precise Warp error This occurs when any thread within a warp advances its PC beyond the 40-bit address space.

CUDA_EXCEPTION_9 : "Warp Hardware Stack Overflow" Precise Warp error This occurs when any thread in a warp triggers a hardware stack overflow. This should be a rare
occurrence.

CUDA_EXCEPTION_1© : "Device Illegal Address" Precise Global error This occurs when a thread accesses an illegal(out of bounds) global address. For increased precision,
use the 'set cuda memcheck’ option.

CUDA_EXCEPTION_ 11 : "Deprecated" Deprecated Deprecated This exception is deprecated and should be treated as CUDA_EXCEPTION ©.

CUDA_EXCEPTION_ 12 : "Warp Assert” Precise Per warp This occurs when any thread in the warp hits a device side assertion.

CUDA_EXCEPTION_13: "Deprecated" Deprecated Deprecated This exception 1s deprecated and should be treated as CUDA_EXCEPTION_©.

CUDA_EXCEPTION_14 : "Warp Illegal Address"” Precise Per warp This occurs when a thread accesses an illegal(out of bounds) global/local/shared address. For
increased precision, use the 'set cuda memcheck’ option.

CUDA_EXCEPTION_15 : "Invalid Managed Memory Access"” Precise Per host thread This occurs when a host thread attempts to access managed memory currently used by the GPU.

CUDA_EXCEPTION_16 : "Deprecated" Deprecated Deprecated This exception 1s deprecated and should be treated as CUDA_EXCEPTION_©.

CUDA_EXCEPTION_17 :

"Cluster Out-of-range Address”

Not precise

Per Cuda Cluster

This occurs when any thread within a block accesses an address that is outside the valid range of
shared memory regions belonging to the cluster.

CUDA_EXCEPTION_18 :

"Cluster Target Block Not Present”

Not precise

Per Cuda Cluster

This occurs when any thread within a block accesses another block that 1s outside the valid range of
blocks belonging to the cluster.
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Overview: CUDA-GDB
GPU Exceptions

* GPU exception example




Overview: CUDA-GDB

Disassembly

- disassemble
* View disassembly of sass instructions
» Current pc prefixed with =>

* Instruction triggering exception (errorpc) prefixed with *>
 |f errorpc and pc match, prefixed with *=>
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Overview: CUDA-GDB

Coredumps

* GPU coredump support
» Disabled by default

» Set CUDA_ENABLE_COREDUMP_ON_EXCEPTION env var to 1
» Generated when a GPU exception is encountered

* GPU coredump name

« core_%t_%h_%p.nvcudmp
« %t is seconds since Epoch
* %h is hostname of system running the CUDA application

* %p is the process identifier of the CUDA application
- Written into the applications SPWD by default

» User defined with CUDA_COREDUMP_FILE env var
» Recognizes %t, %h, %p specifiers
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Overview: CUDA-GDB

Lightweight coredumps
Set CUDA_ENABLE_LIGHTWEIGHT_COREDUMP env var to 1

GPU coredumps will forego dumping memory

Local
Shared
Global

Size of coredump reduced significantly
Backtrace only
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Overview: CUDA-GDB

Coredumps

» User induced GPU coredump
- Set CUDA_ENABLE_USER_TRIGGERED_COREDUMP env var to 1
* Opens a communication pipe for each CUDA process
» Write to pipe to induce a GPU coredump

* GPU corepipe name
« corepipe_%h_%p
* Same %t, %h, %p specifiers
+ User defined with CUDA_COREDUMP_PIPE env var
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Overview: CUDA-GDB

Coredumps

- target cudacore

» Loads GPU core dump into the debugger

» Can load both CPU and GPU coredumps
* CPU coredump is optional

» Examining coredumps with CUDA-GDB does not require a GPU be installed on the system
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Overview: Compute
Sanitizer

31 <ANVIDIA. I



Overview: Compute Sanitizer

Suite of dynamic analysis tools to catch common Supports CUDA/OptiX/OpenACC/OpenMP/etc
programming errors Replaces CUDA-MEMCHECK tool

Memcheck .
L Deprecated since CUDA 11.5
Report invalid memory accesses | | |
. Removed in next major version
Initcheck
e CUDA-GDB memcheck support removed
Report uninitialized memory reads
Sanitizer coredumps

Racecheck

Report invalid concurrent accesses to shared memory
Synccheck

Report invalid barrier usage

Non-interactive CLI based tool

Provides proactive debugging of CUDA kernels
Discover common programming errors up front
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Overview: Compute Sanitizer
Quickstart

On Polaris
* Missing from PATH by module nvhpc/21.9 (default)

* Provided by path from module nvhpc/22.7 (non-default)

Recompile for debugging

* When compiling with nvcc:
* Provide —g for host (CPU) debugging
* Provide —G for device (GPU) debugging

+ Using —1ineinfo will allow checking of optimized code
* Reduced quality of output messages

Latest documentation: https://docs.nvidia.com/compute-sanitizer/index.htm!

Getting help: https://forums.developer.nvidia.com/c/development-tools/cuda-developer-tools/compute-sanitizer/

Compute sanitizer examples: https://github.com/NVIDIA/compute-sanitizer-samples
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Overview: Compute Sanitizer

Memcheck is used to report invalid memory accesses

Out of bounds or misaligned read/write/atomic accesses
Local, shared, or global memory

Stack overflows

Invalid system-scoped atomic accesses
NVLINK peer access

Reports CUDA API errors
Hardware exceptions
Invalid device-side malloc/free usage

Default tool for compute-sanitizer
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Overview: Compute Sanitizer

Memcheck

__device__ void writeldx(int*x buffer)

{
buffer[threadldx.x] = threadldx.x;

}

__global__ void kernel(intx buffer)

{
writeIdx(buffer);

X

int main()

{
void* devBuf = nullptr;
cudaMalloc(&devBuf, 31 * sizeof(int));
kernel<<<1,32>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

}

* When first error is encountered

» Destroy the CUDA context by default

» Controllable with args

- --destroy-on-device-
error=<context|kernel>
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Overview: Compute Sanitizer

Memcheck

» Report device side memory leaks
- --leak-check=full

__device__ void writeldx(int* buffer)

{
buffer[threadldx.x] = threadlIdx.x;

}

__global__ void kernel(intx buffer)

{
writeIdx(buffer);

}

int main()

{
voidx devBuf = nullptr;
cudaMalloc(&devBuf, 31 * sizeof(int));
kernel<<<1,32>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

}
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Overview: Compute Sanitizer

Avoid false negative invalid memory accesses with
paddlng alloc1[0x400]  No error reported

Adds a padding buffer at the end of each allocation

Ensures out-of-bounds access doesn't access adjacent
memory allocation

--padding=<bytes>

alloc1 alloc2

0x1000 0x1400

padd-
ing

alloc2

alloc1

Access to the padding area detected

alloc1[0x400] and reported
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Overview: Compute Sanitizer

Initcheck is used to report uninitialized memory reads

Kernel
Memory passed to CUDA API calls

Global memory supported
Shared and local memory untracked

Can track peer GPU allocations
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Overview: Compute Sanitizer

Initcheck

__global__ void kernel(intx buffer)

{
buffer[threadldx.x] = buffer[threadIdx.x] + threadIdx.x;

}

int main()

{
void* devBuf = nullptr;
cudaMalloc(&devBuf, 32 x sizeof(int));
kernel<<<1, 1>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

X
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Overview: Compute Sanitizer

Initcheck
__global__ void kernel(intx buffer)
{
buffer[threadldx.x] = buffer[threadIdx.x] + threadIdx.x;
* Initcheck can track unused memory }
» Global memory allocated but never written int main()
- --track-unused-memory=yes {
void* devBuf = nullptr;
cudaMalloc(&devBuf, 32 x sizeof(int));
kernel<<<1, 1>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();
X
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Overview: Compute Sanitizer

Racecheck is used to detect potential race conditions

WAW, WAR, RAW accesses to shared memory

Lack of valid synchronization primitive
Warp/block level etc

Shared memory supported
Global and local memory untracked

Two reporting modes
Analysis
Aggregated report

Hazard
Every detected error with details
Verbose
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Overview: Compute Sanitizer

Racecheck __global_
{

void kernel(intx buffer)

__Shared__ int shared[64];

shared[threadIdx.x]
buffer[threadIdx.x]

threadIldx.x;
shared[ (threadIdx.x + 1) % 64];

}

int main()

{
voidx devBuf = nullptr;
cudaMalloc(&devBuf, 64 * sizeof(int));
kernel<<<1,64>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

}
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Overview: Compute Sanitizer

Synccheck is used to detect invalid use of CUDA synchronization primitives

Behavior depends on architecture
Divergent threads in warp/block
Invalid barrier arguments
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Overview: Compute Sanitizer
Synccheck

#include <cuda/barrier>

__global__ void kernel()

{
__shared__ cuda: :barrier<cuda::thread_scope_block> barrier;
1f (threadldx.x == 0)
{
init(&barrier, blockDim.x / 2);
}
__syncthreads();
auto token = barrier.arrive();
barrier.wait(std: :move(token));
}
int main()
{
kernel<<<1,32>>>():
return cudaDeviceSynchronize();
}
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Overview: Compute Sanitizer
Synccheck
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Overview: Compute Sanitizer

Track all child processes Generate coredump on first error

--target-processes=all --generate-coredump=yes
Debug with CUDA-GDB

Unsupported with racecheck

Filter desired kernel launches to be tracked

--kernel-regex

--kernel-regex-exclude Support for custom memory allocators with NVIDIA

Tools Extension (NVTX
Track/ignore n kernel launches ools Extension { )

--launch-count=n
--launch-skip=n

Force stream synchronization every n launches
--force-synchronization-1limit

XML output for error reports
--xXml=yes
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